Literature Review

1. PipeDream-2BW: Memory-Efficient Pipeline-Parallel DNN Training

Problem to solve: Out-of-core DNN model, too large to fit into single GPU memory.
Moreover, we not only want to solve the problem but also want efficient training of large
models, with both high throughput and low memory footprint.

Solution: PiepeDream-2BW(double-buffered weight updates), a system that performs
memory-efficient pipeline-parallel training of DNN models with billions of parameters and
is able to achieves high throughput, low memory footprint, and data parallelism-like
semantics through a innovative weight update double buffering strategy. (Particularly
granted to the its weight gradient coalescing strategy and planning algorithm)
Innovative techniques:

o 2BW’s weight gradient coalescing strategy: a technique that reduces the
memory footprint of training while avoiding pipeline flushes.

o 2BW partitioning planning algorithm: PipeDream-2BW’s planner determines
how to split a model over the available compute devices by exhaustively
searching over the reduced search space of all possible parallel-pipeline
configurations.

Result/Impact: Compared to the hybrid parallelism baseline model, PipeDream-2BW is
6.9x faster for BERT-192, and 5.4x faster for GPT-2 by using 64 GPUs. Compared to the
GPipe model, PipeDream-2BW outperforms corresponding GPipe configurations at the
same global minibatch size by up to 1.9x due to its lack of periodic pipeline flushes.
Compared to PipeDream, PipeDream-2BW is up to 6.2x faster.

2. ZeRO-Memory: ZeRO: Memory Optimizations Toward Training Trillion Parameter
Models

Problem to solve: Being able to train large DNN models (billions to trillions of
parameters), while retaining high computational granularity, low communication
overhead, and eliminate the memory redundancy.

Solution: Zero Redundancy Optimizer(ZeRO): It can optimize memory and training
speed while increasing the model size and eliminates memory redundancies in data- and
model-parallel training while retaining low communication overhead and high
computational granularity.

Innovative techniques:

o ZeRO-DP: A type of ZeRO that builds upon DP(Data Parallelism). It aims at
reducing the per-device memory footprint of a model while retraining the memory
efficiency. In another word, it aims to retain the training efficiency of DP while
achieving the memory efficiency of MP, through partitioning them -- optimizer
states, gradients and parameters -- across data parallel processes.

o ZeRO-R: Another type of ZeRO that builds upon MP(Model Parallelism). It
targets at increasing the memory availability for even larger models by reducing
the residual memory consumption/redundancies in MP and the time it takes for
the memory allocator to find free contiguous memory.

Result/Impact:



o Experimented on ZeRO-100B(a model with up to 170B parameters), enables 8x
increase in model sizes, 10x in throughput improvement(41.4 TFlops/GPU),
achieves super-linear speedups on modern GPU clusters, and trained the largest
model in the world.

o No model refactoring is necessary, and it is as easy to use as standard
data-parallelism.

o Has the potential to scale beyond 1 frillion parameters by using today’s hardware.

o Declared as a prime candidate for future investigation on large model training.

Relevance: All the papers were recently published at the super computing conference --
SC '20: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis -- which is one of the top conferences in the field of
HPC.

3. GEMS: GPU-Enabled Memory-Aware Model-Parallelism System for Distributed DNN
Training

Problem to solve: Model parallelism for out-of-core models (more than 1 machine) that
has a higher speedup than earlier model parallelism solutions. Currently targeting
pathology and large images.
Solution: GEMS - removes the memory footprint in basic model parallelism by
introducing a replica of the model, and switching propagation operations between the
two.
Innovative techniques:
o GEMS MAST: use a replica of the model to fill the memory footprint in MP-basic;
synchronize parameters of the models via allreduce operation
o GEMS MASTER: GEMS MAST, but using allreduce half as much (stacking more
compute onto the allreduce operation)
o GEMS HY: Can be implemented from GEMS MAST or GEMS MASTER, gives
each GPU (model partition) an allreduce operation
Result/Impact: observed 1.36x speedup in GEMS: MAST and a 1.83x speedup in
GEMS: MASTER compared to alternative methods. GEMS introduces more feasible
tools to solve overarching problems in digital pathology and other domains that require
heavy memory usage.

4. Training Large Neural Networks with Constant Memory using a New Execution
Algorithm

Problem to solve: Maintain desired depth of neural networks (NN) while reducing the
memory usage during training.
Solution: Layer-to-layer (L2L): can run very large models independent of depth by
applying graph reduction and cross mixed precision to receive results on par with
standard NN training.
Innovative techniques:
o Graph Reduction: abstracts encoder layer architecture so that only one encoder
layer is needed, reduces memory footprint from O(n) to O(1) (only 3 layers in
model graph needed: one embed layer, one encoder layer, and one class layer).



o Cross Mixed Precision: Keeping floating point (FP) 32 precision on master copy
of model while running reduced graph at FP16 precision. Weights updated with
FP32 precision, propagations done at FP16 precision
Result/Impact: The depth of models no longer affects the memory available on GPUs
as drastically as it has before; this can bring model parallelism problems back to data
parallelism potentially, or even reduce the amount of resources needed for model
parallelism techniques.

5. GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism

Problem to solve: Finding a way to handle model parallelism with task-indepence and
efficiency while supporting any large scale neural network overcoming barriers like
memory limitations and communication overhead.

Solution: GPipe: a flexible pipeline parallelism library which handles scaling of any
network expressed as a sequence of layers with efficacy regardless of the network size
and architecture.

Innovative techniques:

o Batch-splitting: GPipe introduces a batch-splitting pipeline algorithm. This
algorithm starts by partitioning each layer into cells placed on separate
accelerators then splits mini-batches into micro-batches and executes the
micro-batches over a cell.

o Synchronous Gradient Descent: Synchronous gradient descent is used for
training where gradients are accumulated across micro-batches and then applied
at the end of the mini-batch which is consistent regardless of the number of
partitions (cells).

Result/Impact: GPipe provides flexibility and efficiency when used on large neural
networks. By scaling up the networks, the model is capable of achieving linear speedup
with the number of devices used to train a network. Moreover, GPipe provides flexibility
to support any DNN that can be represented as a sequence of layers and reliability by
using synchronous gradient descent that is consistent regardless of the number of
partitions.

Relevance: The final version of this paper was published in 2019 by a team of
researchers at Google at the gpu technology conference GTC20. This paper provides a
great insight on an efficient technique on model parallelism that may inspire other or
similar techniques to be implemented in this project.

6. Channel and Filter Parallelism for Large-Scale CNN Training

Problem to solve: Accelerating large-scale training of CNN on complex models and
large datasets via model parallelism while keeping low communication overhead and
enabling strong scaling. Also, overcoming some limitations of data-parallelism such
memory limitations and mini-batch size with wide CNNs.

Solution: This paper introduces three algorithms that allow for strong scaling, reducing
communication overhead with weak scaling, and requiring no hyperparameter tuning.
Each algorithm is differentiated by the data movement and computation patterns it uses.
The three algorithms are listed in the innovative techniques section below.



Innovative techniques:

o Stationary-x: Avoids communication of input data during forward propagation.

o Stationary-y: Symmetric to Stationary-x swapping forward and backward
propagation. It avoids communication of input data during backpropagation as
well as the gradient computations.

o Stationary-w: More general algorithm combining the communication pattern of
both Stationary-y and Stationary-x algiorhtms. It controls the amount of
communication during forward/backward propagation.

All three algorithms partition the parameters of convolutional layers instead of
replicating them for each processor (which is both data and model parallelism).
Result/Impact: The algorithms provided in this paper improve strong and weak training

including 4.1x reduction in training time of residual networks and 4x reduction in
allreduce overhead. They reduce communication overhead and memory pressure.
Moreover, the wider models introduced in this paper provide more accuracy on
training/testing the ImageNet dataset.

Relevance: This paper was published in 2019 at the super computer conference SC19.
It provides insight on how to accelerate large-scale CNN training using multiple
techniques including channel and filter partitioning. The ideas behind these techniques
might come in handy in this project especially when dealing with wide models.

Reference:

PipeDream-2BW: Narayanan, Deepak, et al. "Memory-efficient pipeline-parallel dnn
training." arXiv preprint arXiv:2006.09503 (2020).

ZeRO-Memory: Rajbhandari, Samyam, et al. "Zero: Memory optimization towards
training a trillion parameter models." arXiv preprint arXiv:1910.02054 (2019).

GEMS: A. Jain, et al., "GEMS: GPU-Enabled Memory-Aware Model-Parallelism System
for Distributed DNN Training," in 2020 SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), Atlanta, GA, US, 2020
pp. 621-635. doi: 10.1109/SC41405.2020.00049

Constant Memory Training: Pudipeddi, Bharadwaj et al. "Training Large Neural
Networks with Constant Memory using a New Execution Algorithm" arXiv preprint
arXiv:arXiv:2002.05645 (2020).

GPipe: Huang, Yanping, et al. "GPipe: Efficient Training of Giant Neural Networks using
Pipeline Parallelism" arXiv:1811.06965 [cs.CV] (2019).

Channel and Filter: Dryden, Nikoli, et al. “Channel and Filter Parallelism for
Large-Scale CNN Training” In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’'19),
https://doi.org/10.1145/3295500.3356207 (2019).

Hypothesis


https://arxiv.org/abs/2002.05645

Use analytical models to estimate execution time for a model split to efficiently split the
DNNs across multiple GPUs

Use PyTorch’s Model and Json APlIs to understand data flow in DNNs written in PyTorch
to implement user transparent model-splitting

Use CPU offloading mechanism to optimize GEMS-MASTER design

Validation:

Compare the performance (images per sec) of naive splitting and analytical model
splitting

o Compare the memory consumption
Validate user transparent model-splitting by splitting complex deep neural network
architectures
Validate whether GEMS design can be applied to larger models that have more
parameters using CPU offloading



